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Abstract: Regression methods are commonly used to learn the mapping from a set of predictor variables to a continuous-
valued target variable such that their prediction errors are minimized. However, minimizing the errors alone may not be sufficient
for some applications, such as climate modeling, which require the overall predicted distribution to resemble the actual observed
distribution. On the other hand, histogram equalization methods, such as quantile mapping, are often used in climate modeling to
alter the distribution of input data to fit the distribution of observed data, but they provide no guarantee of accurate predictions.
This paper presents a flexible regression framework known as contour regression that simultaneously minimizes the prediction
error and removes biases in the predicted distribution. The framework is applicable to linear, nonlinear, and conditional quantile
models and can utilize data from heterogenous sources. We demonstrate the effectiveness of the framework in fitting the daily
minimum and maximum temperatures as well as precipitation for 14 climate stations in Michigan. The framework showed
marked improvement over standard regression methods in terms of minimizing their distribution bias.  2014 Wiley Periodicals,
Inc. Statistical Analysis and Data Mining, 2014
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1. INTRODUCTION

Many postprocessing tasks in climate modeling can
be cast into a regression problem—from bias correcting
the climate scenarios generated by numerically simulated
climate models to downscaling the coarse-scale scenarios
into a finer resolution for use in climate change impact
assessment studies [1–3]. In addition to minimizing the
errors of the regression outputs, these tasks require the
predicted distribution to preserve specific characteristics of
the actual distribution. As most regression methods focus on
minimizing point-wise prediction errors alone, their overall
predicted distribution does not always resemble the actual
distribution.

As an illustration, consider a two-dimensional data set,
where the response variable y is generated from the pre-
dictor variables x according to the following equation: y =
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ωT x + ω0 + ε(0, σ 2), where � = [ω2, ω1, ω0] = [1, 2, 5].
Using 10 000 training examples, multiple linear regres-
sion (MLR) accurately learns the model parameters as
�̂ = [0.99, 1.96, 5.05]. However, it fails to replicate the
shape of the original distribution, as can be seen from
the cumulative distribution function (CDF) plots given in
Fig. 1. We consider the difference in area between the two
CDFs as bias of the predicted distribution.

As another example, Fig. 2 compares the histograms of
daily maximum temperature observed at a climate station
in Michigan and the predicted outputs of MLR. The width
of the histogram obtained using MLR is narrower than the
actual distribution of observation data, which implies MLR
has underestimated the frequency of days with extreme high
and low maximum temperatures. Alternative methods such
as quantile mapping (QM) [4,5] can be applied to correct
the distribution bias of any input data to match the desired
output distribution. However, their prediction accuracy is
typically worse than regression methods. For the example
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Fig. 1 Area between the CDF of y and yMLR . [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Fig. 2 Histogram of predicted daily maximum temperature at a
climate station in Michigan. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

shown in Fig. 2, although QM provides a better fit to the
histogram of observed data, its prediction error (RMSE) is
25% worse than that of MLR.

This paper presents a regression framework known
as contour regression that seeks to minimize both its
prediction error and bias in the predicted distribution.
The framework is very flexible in that it can be easily
extended to nonlinear functions and can accommodate
different types of loss functions. A preliminary version
of the framework was published in our conference paper
[6]. In this follow-up study, we extended the framework
to incorporate predictor variables from heterogeneous data
sources. This is particularly useful for applications such as
climate scenario development, where the predictor variables
in the training and test sets are often obtained from different
sources. Since their distributions can be different, the
test set must be adjusted before applying the regression
function estimated from the training set. The framework
developed in this paper overcomes this problem by
explicitly correcting the distribution mismatch between the

heterogeneous data sources while minimizing the prediction
error. We empirically demonstrate the effectiveness of our
framework using climate data from 14 selected stations
in Michigan. The framework showed marked improvement
over standard regression methods in terms of minimizing
biases in the predicted distribution for all the stations.

2. STATISTICAL POSTPROCESSING OF
CLIMATE MODEL SIMULATIONS

With the increasing availability of climate models
[7] courtesy of projects such as NARCCAP (North
American Regional Climate Change Assessment Program)
[8], extensive research has been carried out to utilize
the long term future climate scenarios simulated by these
models for studying the impact of climate change on
human and natural ecosystems. However, there are several
reasons that the scenarios must be postprocessed before
they can be effectively used [9,10]. First, the scenarios
are biased due to imperfections in the climate model
representation and parameterization [11]. A biased scenario
implies that the distribution of climate model outputs is
inconsistent with observation data when simulated over
historical time period. Second, the spatial resolution of the
climate scenarios is often too coarse to be effectively used
for climate change impact assessment studies [12,13].

Various statistical postprocessing methods have been
developed to overcome these limitations. Some of these
methods are distribution-driven, designed to adjust the
distribution of the simulated model outputs to match the
distribution of observation data. This includes histogram
equalization techniques such as QM [4], Equidistant CDF
Matching (EDCDFm), and the transfer function approaches
proposed in ref. 5. These methods are applicable even when
there is no day-to-day mapping between the model output
and observation data. Since they focus mainly on preserving
the shape of the distribution, the accuracy of their individual
predictions can be poor.

By contrast, MLR and other regression methods [4] are
accuracy-driven approaches, focusing mainly on minimiz-
ing point-wise prediction error without considering how
similar is the predicted distribution to the actual distribu-
tion. These methods are trained using the climate model
outputs as predictor variables and the actual observations
as response variables. However, they do not account for
biases between historical and future climate scenarios gen-
erated by the climate models. For example, to downscale
regional climate model (RCM) simulations, the regression
function is calibrated using RCM simulations driven by
observation data from the National Center for Environ-
mental Prediction (NCEP). The calibrated function is then
applied to RCM simulations driven by general circulation
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models (GCMs) to generate the future climate scenarios1.
The regression function is therefore trained using predic-
tor variables obtained from one data source but applied to
predictor variables obtained from another source. Current
strategy for handling this problem is to calculate a ‘change
factor’, which represents the difference in mean or stan-
dard deviation between the two distributions. This strategy
does not account for differences in higher order moments
or quantiles of the distributions. The contour regression
framework proposed in this paper can explicitly correct the
distribution mismatch between heterogeneous data sources
while minimizing the prediction error.

3. PRELIMINARIES

Let D = {(xi , yi)}ni=1 be a labeled training set of size n,
where each xi ∈ �d is a d-dimensional vector of predictor
variables and yi ∈ � is the corresponding response variable.
The goal of regression is to learn a target function f (x,β)

that best predicts the output y for any given input x. The
target function is trained on D to learn the parameter
vector β that minimizes a loss function L[y, f (x,β)]. For
the remainder of this paper, we denote X = [xT

i ] as the
(n × d)-dimensional input data matrix and y = [yi] as the
n-dimensional vector of response variable for training the
regression function.

3.1. Multiple Linear Regression (MLR)

MLR is one of the most common regression approaches
used for statistical downscaling of climate data. MLR uses
ordinary least squares to solve a linear model of the form

y = xT β + ε,

where ε ∼ N(0, σ 2) is a Gaussian noise term with variance
σ 2. MLR assumes there is one-to-one correspondence
between each xi and yi in the training data. The regression
parameters are estimated by minimizing the sum of squared
residuals (y − Xβ)T (y − Xβ), which leads to the following
closed-form solution

β̂ = (XT X)−1XT y

3.2. Quantile Mapping (QM)

QM can adjust the distribution of a univariate predictor
variable X to match the distribution of the target variable

1 The regression function cannot be trained with GCM-driven
RCM outputs because there is no day-to-day correspondence
between the model outputs and observation data.

Y . For example, Y may represent the observed maximum
temperature at a climate station while X is the simulated
maximum temperature for its corresponding grid cell
obtained from a RCM. Let FX be the CDF of X and FY be
the CDF of Y . Assuming the CDF is continuous and strictly
increasing, QM estimates the value of the target variable yi

given an input xi as follows:

QM : ŷi = F−1
Y (FX(xi)), (1)

where F−1
Y is the inverse CDF (also known as quantile

function) for Y . QM assumes that the test data points upon
which the transformation is to be applied come from the
same distribution as the training data. Furthermore, a large
training set is required by QM to ensure that the empirical
CDFs sufficiently capture the true distribution of X and Y .
A distinct advantage of QM is that no day-to-day mapped
data are required. This is particularly useful for climate
scenario development, where the timing of GCM-driven
RCM simulations cannot be directly mapped to the actual
days of observations.

Next, we present several theoretical properties of the QM
approach. Let X = {xi}ni=1 be the set of values associated
with the predictor variable X and Y = {yi}ni=1 be the set
of values associated with the response variable Y . Suppose
FX and FY are the empirical CDFs derived from X and Y ,
respectively.

FX(x) = 1

n

n∑
i=1

1[Xi ≤ x], FY (y) = 1

n

n∑
i=1

1[Yi ≤ y],

where 1[·] is an indicator function. Let Ri be the rank of
a data point xi ∈ X and Oi be the rank of a data point
yi ∈ Y . Thus

FX(xi) = Ri

n
, FY (yi) = Oi

n
.

Proposition 1 Let R and O be the multisets containing
the ranks of all the data points in X and Y , respectively,
i.e. R = {Ri |FX(xi) = Ri

n
, xi ∈ X } and O = {Oi |FY (yi) =

Oi

n
, yi ∈ Y}. If there is one-to-one correspondence (bijec-

tion) between elements of the multisets R and O, then QM
on X will perfectly replicate the distribution of Y .

Proof: Since there is a one-to-one correspondence, for each
element Oi ∈ O, there is exactly one element Rj ∈ R such
that Oi = Rj . QM will map the data point xi to its predicted
value ŷi based on the following sequence of transformation:

xi

FX−→ Oi

n
= Rj

n

F
−1
Y−−→ ŷi = yj
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Every value yj ∈ Y must have a corresponding ŷi and xi it
was mapped from using QM. Therefore, the CDFs for F

Ŷ

and FY must be identical. �

Proposition 2 The sum-of-square residual error (SSE) for
a QM function that perfectly replicates the distribution of
the response variable can be larger than zero.

Proof: Consider a labeled training set D = {(xi, yi)}ni=1.
Let R and O be the multisets containing the ranks of all the
data points in {xi} and {yi}, respectively. The sum-of-square
residual error for QM is given by

SSE =
∑

i

(yi − ŷi )
2

=
∑

i

[
F−1

Y (FY (yi)) − F−1
Y (FX(xi))

]2

=
∑

i

[
F−1

Y (Oi) − F−1
Y (Ri)

]2

,

where Oi = FY (yi) and Ri = FX(xi). To prove this,
consider the case where the ranks are unique and Ri =
n − Oi + 1 (i.e., the ordering in R and O are completely
opposite of each other). Since there is a one-to-one
correspondence between Oi’s and Ri’s, QM will perfectly
transform X to replicate the distribution of Y (see
Proposition 1). However, F−1

Y (Oi) − F−1
Y (Ri) �= 0 since

Oi �= Ri . Thus, SSE > 0. �

Proposition 3 If the rank correlation between the predictor
variable X and response variable Y is 1, then QM on X will
perfectly replicate the distribution of Y and its SSE is equal
to zero.

Proof: Let R and O be the multisets containing the ranks
of all data points in X and Y , respectively. Since their
rank correlation is 1, ∀i : Oi = Ri . QM will perfectly
replicate the distribution of Y because there is a one-to-
one correspondence between the unique elements of R and
O (see Proposition 1). Furthermore, SSE = ∑

i[F
−1
Y (Oi) −

F−1
Y (Ri)]2 = 0. �

4. CONTOUR REGRESSION FRAMEWORK

As previously noted, regression methods seek to maxi-
mize the prediction accuracy of individual data points but
are limited by the potential bias in their predicted distribu-
tion, as depicted by the area between the two CDFs shown
in Fig. 1. Our proposed framework, called contour regres-
sion, aims to minimize the bias by adding a distribution reg-
ularization term, which measures the nonoverlapping area

between the empirical CDF of the target function f (x;β)

and the actual distribution y, directly into the objective
function:

min
β

n∑
i=1

{
γL

[
yi, f (xi;β)

]
+ (1 − γ )L

[
y(i), ŷ(i)

]}
, (2)

where y(i) is the i-th largest value of the response variable
y and ŷ(i) is the i-th largest value of f (x,β). 0 ≤ γ ≤
1 is a user-defined parameter that controls the trade-off
between maximizing accuracy and minimizing bias in the
predicted distribution. L can be any generic loss function,
including sum of squared error and quantile loss. Section
4.1 presents multivariate linear contour regression (MLCR),
which uses the least-square loss function. Section 4.2
introduces kernel contour regression (KCR), which is an
extension of MLCR to the nonlinear case. Section 4.3
incorporates the distribution regularization term into the
loss function for quantile regression.

4.1. Multiple Linear Contour Regression (MLCR)

This section describes a variant of CR using a linear
model as its target function and a squared error loss
function.

n∑
i=1

{
γ

[
yi − f (xi ,β)

]2

+ (1 − γ )

[
zi − ŷ(i)

]2}

where, zi = y(i) and ŷ(i) is the i-th largest value of f (x,β).
To estimate the parameter β, we employ the following
iterative approach. First, β is initialized to be the solution of
MLR. A constant vector z that contains the ordered values
of {yi} is also constructed. Since the values of {ŷi} depend
on the current estimate of β, we need to sort the values
of f (xi ,β) in order to compute the distribution bias (i.e.,
the second term of the objective function). Therefore, at
each iteration, we reorder the rows (data points) in both
matrix X and vector y based on their current estimated
values of ŷi , i.e. if the index of row i is less than row j ,
then f (xi ,β) < f (xj ,β). Once the data points in X and y
have been sorted2, we can update β as follows:

β̂ = (XT X)−1
[
γ XT y + (1 − γ )XT z

]

Convergence is obtained when the ordering of the data
points remains the same after updating β.

The user-specified parameter γ controls the trade-off
between model accuracy and distribution bias. As γ → 1,

2 Note that the vector z remains fixed for all iterations.
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Fig. 3 Influence of the parameter γ on the distribution bias of
MLCR. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

MLCR reduces to the MLR approach. Figure 3 shows the
different CDFs obtained by MLCR when applied to the data
set described in Fig. 1.

4.1.1. Proof of convergence

This section presents the proof of convergence for the
iterative update algorithm described in the previous section.
Let β t , ŷt , Xt be the regression parameters, predicted
values, and input data matrix at the t-th iteration, while
β t+1, ŷt+1, Xt+1 represent their respective values after the
(t + 1)-th iteration. Note that Xt+1 is a reordering of the
rows in Xt (step 3 of the MLCR algorithm).

LEMMA 1: Consider an ordered vector of real num-
bers, a = [a1a2 · · · an], where a1 ≤ a2 · · · ≤ an. If b =
[b1b2 · · · bn] is a vector of length n whose elements are
chosen (without replacement) from a given set of n real
numbers, then

max
b

aT b = aT bo =
∑

i

a(i)b(i),

where bo = [b(1)b(2) · · · b(n)], b(1) ≤ b(2) · · · ≤ b(n).

Proof: By contradiction, assume the dot product between
a and bo is not maximized. Assume there exists another
vector b̂, which has the same values as bo except its ith

and j th elements are swapped, i.e. b̂i = b(j) > b̂j = b(i),
but aT bo < aT b̂. Since the two vectors differ only in terms
of their ith and j th elements, therefore

a(i)b(i) + a(j)b(j) < a(i)b̂i + a(j)b̂j .

But

a(i)b(i) + a(j)b(j) − a(i)b̂i − a(j)b̂j

= a(i)b(i) + a(j)b(j) − a(i)b(j) − a(j)b(i)

= (a(i) − a(j))(b(i) − b(j))

≥ 0,

which is a contradiction. Therefore aT bo ≥ aT b̂. �

LEMMA 2: If β is fixed and we reorder the rows of X
and y in increasing order of ŷ (step 3 of MLCR algorithm),
then L(β t , ŷt , Xt ) ≥ L(β t , ŷt+1, Xt+1)

Proof: Let L(β, ŷ, X) = γLSSE + (1 − γ )Lbias, where
LSSE refers to the first term of the objective function that
minimizes the prediction error and Lbias refers to the second
term of the objective function that minimizes the distribu-
tion bias. Since exchanging the rows in X and y does not
affect LSSE, we focus only on Lbias.

Lbias =
n∑

i=1

(zi − ŷ(i))
2 =

n∑
i=1

(z2
i + ŷ2

(i) − 2ŷ(i)zi)

Reordering of the rows will not affect the first two terms
of the sum. Hence, L(β t , ŷt , Xt ) − L(β t , ŷt+1, Xt+1) =∑n

i=1(ŷ
(t+1)
(i) z

(t+1)
i − ŷ

(t)
i z

(t)
i ), where ŷ

(t+1)
(i) are the reordered

values of f (x,β) and ŷ
(t)
i are the values of f (x,β) before

reordering. Since z
(t+1)
i = z

(t)
i = y(i) and using Lemma 1,

we have
∑n

i=1(ŷ
(t+1)
(i) y(i) − ŷ

(t)
i y(i)) ≥ 0, thus completing

the proof. �

LEMMA 3: If the rows in X and y are fixed, then
L(β t , ŷt+1, Xt+1) ≥ L(β t+1, ŷt+1, Xt+1) after β is updated
(step 4 of MLCR algorithm).

Proof: Since β t+1 is obtained by minimizing the objec-
tive function (assuming Xt and yt are fixed), therefore
L(β t , ŷt+1, Xt+1) ≥ L(β t+1, ŷt+1, Xt+1). �

THEOREM 1: The objective function is monotonically
nonincreasing upon applying the iterative MLCR algorithm.

Proof: Let L(β t , ŷt , Xt ) be the value of the objective
function after t iterations. β is updated after applying steps

Statistical Analysis and Data Mining DOI:10.1002/sam
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3 and 4 of the MLCR algorithm. The proof follows directly
from Lemmas 2 and 3. �

Based on Theorem 1 and the fact that the objective
function is nonnegative, the algorithm will eventually
converge to a local minimum.

4.2. Kernel Contour Regression (KCR)

Ridge regression can be used to avoid overfitting by
providing a sparse solution for β. It can also provide a way
to overcome the hurdle of taking the inverse of a covariance
matrix with correlated features. By writing β = XT α, the
dual form of the ridge regression solution can be written as
follows

α̂ = (XXT + λI)−1y.

Using the kernel trick, we can project X to a higher
dimensional feature space and replace XXT by the Gram
(kernel) matrix K. This extends ridge regression to deal
with nonlinear relationships between X and Y . A similar
approach can be used to extend CR to a nonlinear setting.
Specifically, the objective function for KCR can be written
as follows:

LKCR = LMLCR + λβT β,

where λ is the ridge parameter. Replacing X by �, we have

β = (�T � + λI)−1
[
γ�T y + (1 − γ )�T z

]

Let β = �T α. After some manipulation, we obtain

α = (��T + λI)−1(γ y + (1 − γ )z)

4.3. Quantile Contour Regression (QCR)

MLR focuses on accurately predicting the conditional
mean of the response variable. As illustrated in Figs 1 and
2, it is not well suited for predicting extreme values. To
overcome this limitation, an alternative approach known as
quantile regression (QR) [14] can be used to improve the
estimate of the τ th conditional quantiles of the prediction.
This is achieved by minimizing the following asymmetrical
loss function:

n∑
i=1

ρτ (yi − xT
i β),

where ρτ (u) =
{

τu u > 0

(τ − 1)u u ≤ 0
and the τ th quantile of

a random variable Y is given by:

QY (τ) = F−1(τ ) = inf{y : FY (y) ≥ τ }.

We extend CR to quantile regression by modifying the loss
function as follows:

n∑
i=1

(ρτ1(yi − xT
i β) + ρτ2(zi − ŷi )),

where zi = y(i) and ŷi is the i-th lowest value of f (x,β).
Algorithm 1 can be modified to solve the quantile contour
regression (QCR) problem. Instead of solving β in closed
form in step 4, we apply linear programming to minimize
the objective function for QCR (assuming z, X, and y are
fixed).

5. CONTOUR REGRESSION FOR MULTISOURCE
DATA

Let X = {xi}ni=1 and X̃ = {x̃i}ni=1 be two different
sources of predictor variables and Y = {yi}ni=1 be the
values of response variables. Suppose there is a one-to-
one correspondence between each instance in X and Y
but an instance in X̃ cannot be matched to an instance in
Y . For climate scenario downscaling, X may represent the
predictor variables obtained from NCEP-driven simulations
whereas X̃ may represent the predictor variables from
GCM-driven simulations. Our goal is to learn a regression
function f (x,β) that can predict the response value of a
previously unseen instance from the domain of X̃ .

The contour regression framework described in the
previous section can be automatically applied to the
preceding regression problem. The first term of the
objective function in Eq. (2) is computed using X whereas
the second term of the objective function is computed using
X̃ . This is possible since the second term matches the
quantiles of the distributions, and thus, does not require one-
to-one correspondence between the predictor and response
variables. We consider two variations of the CR framework
for multisource data. The first approach incorporates the
predictor variables from X̃ directly into the second term
of the objective function. We termed this approach as
MLCRHET. The second approach adjusts the distribution
of X̃ to match the distribution of X before applying the
adjusted value to the second term of the objective function.
We termed this approach as MLCRGQ.

5.1. MLCRHET

For MLCR, the second term of the objective function
given in Eq. (2) measures the squared difference of the
predicted and observed distribution, i.e.

∑
i[y(i) − ŷ(i)]2,

where ŷ(i) is the i-th lowest predicted value f (x,β). This
approach can be easily extended to heterogeneous data
by replacing x ∈ X with x̃ ∈ X̃ and sorting the predicted
values to obtain the ŷi’s. This approach essentially tries to

Statistical Analysis and Data Mining DOI:10.1002/sam
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learn β in such a way that simultaneously minimizes the
prediction error on X and the distribution bias on X̃ .

5.2. MLCRGQ

One potential limitation of MLCRHET is that it does not
explicitly correct the difference between X and X̃ . An alter-
native approach is to transform the latter to have the same
distribution characteristics as the former. The transforma-
tion can be performed using various methods including
geometric quantile mapping (GQM) [15], covariance align-
ment [16], and change factors. In this paper, we consider
the MLCR approach using GQM to transform X̃ into its
corresponding value in X . The transformed value is then
incorporated into ŷ in the second term of the objective
function given in Eq. (2). The transformation only needs
to be performed once (during preprocessing) and remains
unchanged as Algorithm 1 progresses from one iteration to
the next.

To perform the transformation, we need to define a notion
of multidimensional quantiles and positions of data points.
Geometric quantile is the multidimensional equivalent of
a univariate quantile function [17]. The position [18] of a
data point z relative to a set of points Z = (z1, .., zm)T is
iteratively computed as follows [6,15]:

pk
Y (z) = 1

κn

n∑
i=1

pk−1
Y (z) − pk−1

Y (yi )

‖ pk−1
Y (z) − pk−1

Y (yi ) ‖

p1
Y (z) = 1

κn

n∑
i=1

z − yi

‖ z − yi ‖ (3)

Thus, for each data point x̃i ∈ X̃ , we apply the transforma-
tion given in Eq. (3) to identify its corresponding position
and look for the image point xi ∈ X that is closest to its
position. The second term of the objective function given
in Eq. (2) is subsequently computed using the image points
of the data points in X̃ .

6. EXPERIMENTAL EVALUATION

This section describes the data set used for evaluation as
well as the experimental setup and results obtained from
applying the proposed CR framework.

6.1. Data Sources

We evaluated the performance of our framework on
20-year climate data from 14 stations in Michigan.
The response variables correspond to daily maximum
temperature, minimum temperature, and precipitation

observed at each station, spanning the period of 1980–1999.
The predictor variables used in this study correspond
to RCM simulations obtained from the North American
Regional Climate Change Assessment Program (NARC-
CAP) [8]. Nine predictor variables were chosen—zonal and
meridional surface wind speed, maximum, minimum, and
average surface air temperature, surface pressure, humid-
ity, precipitation, and 500 hPa geo-potential height. The
three RCMs used in this study are the Canadian regional
climate model (CRCM), the Weather Research and Fore-
casting Model (WRFG), and the regional climate model
Version-3 (RCM3). The gridded RCM data have a spatial
resolution of 50 km. The nearest land grid cell to each
station is chosen to provide the RCM data for that station.

The RCM simulations can be driven either by NCEP/
DOE AMIP-II Reanalysis (NCEP) or GCMs as their
lateral boundary conditions. The NCEP-driven runs span
the years 1979–2004 and is a retrospective model of
the atmosphere based on observed data. Since there is
a day-to-day mapping between the predictor variables
provided by the NCEP-driven runs and the response
variables provided by station data, regression methods can
be applied to their combined data. By contrast, the GCM-
driven simulations are available for the years 1971–2000
(historical period) and 2041–2070 (future period). Since
each GCM-driven simulation provides one of many possible
realizations of the climate scenarios, it is not meaningful
to associate the simulated predictor variables for a given
day with the response variables for that day. Without a
day-to-day mapping between the predictor and response
variables, regression methods are inapplicable to such
data. Nevertheless, QM and distribution-regularized contour
regression can be used here because they require the
matching of quantiles between two distributions, instead of
matching the predictor and response values by their dates.

6.2. Experimental Setup

Our experiments were conducted using NCEP-driven
RCM simulations and station data from 1980-1999. The
regression functions and CDFs for QM were trained using
the first 10 years of data and evaluated on the remaining
10 years. Nine data sets were created, each corresponding
to a combination of RCM (WRFG, CRCM, or RCM3)
and the response variable (T for maximum temperature,
t for minimum temperature, and P for precipitation). For
example, the data set named ‘WRFG-T’ uses predictor
variables from WRFG and maximum temperature as its
response variable. The parameter γ for contour regression
was fixed across all stations and the maximum number
of iterations was set to 10. For quantile regression, the
parameter τ is chosen to be the upper or lower 5th percentile
of the distribution. Specifically, τ = 0.95 for modeling
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extreme precipitation and maximum temperature, whereas
τ = 0.05 for modeling extreme minimum temperature. For
experiments with heterogeneous data sources, GCM-driven
RCM runs from 1980 to 1989 were used (in addition to the
NCEP-driven runs) to provide the distribution information
needed to calibrate the parameters of the CR function.
The CR function is then applied to GCM-driven RCM
simulations from 1990 to 1999 and compared against the
observed distribution for the given time period.

MLR, QM, lasso, and quantile regression are chosen as
the baseline algorithms for comparison. The performance of
the different methods is evaluated in terms of its root mean
square error (RMSE) and distribution bias (RMSE-CDF):

RMSE =
√√√√∑

i

(yi − ŷi )2

m
,

RMSE-CDF =
√√√√∑

i

(y(i) − ŷ(i))2

m
,

where m is the number of test examples and ŷ corresponds
to the predicted values.

6.3. Experimental Results

First, we compare the performance of MLCR against
MLR and lasso regression. The results are shown in Table
1. Barring possible overfitting, MLR should, in principle,
have a lower RMSE given its emphasis on minimizing
residual errors. Lasso is more robust to overfitting and
produces sparser models. For maximum and minimum
temperatures (the first six data sets in Table 1), MLCR
is slightly worse than MLR, with an increase in RMSE
of about < 3%. However, MLCR improves its distribution
bias (RMSE-CDF) over MLR considerably, with an average
improvement around 40%. This improvement is observed
across all climate stations in each data set, as shown by
the 100% win–loss percentage in Table 1. A similar result
was observed with Lasso. although not shown in the table,
MLCR also has a lower RMSE than QM on all the data sets.

For precipitation, MLR and Lasso fared considerably
worse due to the zero-inflated nature of the data (see Fig.
4). Since MLR struggled to capture the shape of the dis-
tribution, we chose a smaller value for the γ parameter
of MLCR than was used for temperature data to obtain a
smaller bias in the predicted distribution. Consequently, its
RMSE is considerably worse than MLR or Lasso, but it
achieves an impressive average RMSE–CDF improvement
of more than 70%. We use two metrics to evaluate the
distribution bias. First, we compute the difference in stan-
dard deviation (σ ) between the predicted distribution (ŷ)
and observed distribution (y) on the test data (from 1990 to

Table 1. Relative performance gain of MLCR over baseline
approaches.

RMSE RMSE-CDF RMSE-CDF
% loss % gain win-loss %

Dataset MLR Lasso MLR Lasso MLR Lasso

WRFG-T 1.9 1.7 39.0 41.7 100 100
CRCM-T 2.8 2.6 25.8 28.0 100 100
RCM3-T 2.0 1.8 35.3 39.2 100 100
WRFG-t 1.0 0.6 51.4 53.7 100 100
CRCM-t 1.9 1.6 38.2 40.1 100 100
RCM3-t 1.8 1.6 53.2 56.1 100 100
WRFG-P 28.8 28.3 74.3 75.8 100 100
CRCM-P 25.8 25.0 71.1 73.2 100 100
RCM3-P 29.9 29.5 75.6 76.7 100 100
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Fig. 4 CDF of predicted daily precipitation at a weather
station in Michigan over the years 1990–1999. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

1999). The results given in Table 2 suggest that MLCR was
able to capture variance of the observed distribution better
than both MLR and Lasso. Nevertheless, the variance of the
predicted distribution using QM is still closer to observa-
tion data than MLCR, which is not surprising considering
the former is a distribution-driven method and the latter is a
hybrid of distribution-driven and accuracy-driven methods.
Second, to measure the similarity between their empirical
CDFs, we also compute the correlation (ρCDF ) between the
sorted values of the predicted and observed CDFs. MLCR
once again consistently outperforms MLR and Lasso for
every station (see Table 2). MLCR also produces a higher
ρCDF than QR for some of the stations (especially for pre-
cipitation data) because its γ parameter is chosen to give
more emphasis on minimizing the distribution bias. Even
for stations where the performance of MLCR does not fit as
well as QM, its overall distribution is still closer to obser-
vation data than MLR (see Fig. 4).

6.3.1. QCR results

We compared the performance of QCR against QR
in terms of its ability to capture the shape as well as
extreme values of the distribution. The following evaluation
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Table 2. Percentage of stations that MLCR outperformed base-
line in terms of σ and ρCDF.

σ ρCDF
win–loss% win–loss%

Dataset MLR Lasso QM MLR Lasso QM

WRFG-T 100 100 0 100 100 0
CRCM-T 100 100 0 100 100 0
RCM3-T 100 100 0 100 100 0
WRFG-t 100 100 0 78.6 85.8 64.3
CRCM-t 100 100 0 92.9 100 35.8
RCM3-t 100 100 0 92.9 85.8 85.7
WRFG-P 100 100 7.1 100 100 28.6
CRCM-P 100 100 0.0 100 100 50.0
RCM3-P 100 100 7.1 100 100 64.3

Table 3. Percentage of stations that QCR outperformed QR in
terms of RMSE, F -measure, Kolmogorov-Smirnov statistic (K)
and correlation for data points considered extreme value.

Dataset RMSE F -measure k ρ

WRFG-T 100 100 100 100
CRCM-T 100 100 100 92.9
RCM3-T 100 100 100 100
WRFG-t 100 100 100 64.3
CRCM-t 100 100 100 58.7
RCM3-t 100 100 100 78.6
WRFG-P 100 100 100 35.8
CRCM-P 100 100 100 28.6
RCM3-P 100 100 100 21.4

metrics were used to compare the two approaches. First,
we compute RMSE using only observation data from the
extreme values (top 5th percentile for T and P or bottom
5th percentile for t) of the distribution. The second metric,
F -measure, determines how well QR and QCR can detect
the timing of extreme days during the test period of
1990–1999. A true positive (TP) event is when the method
predicts the value to be extreme and the actual observed
value is also extreme. A false positive (FP) event is when
the method predicts an extreme value day but the observed
value is nonextreme. A false negative (FN) event is when
the method predicts a nonextreme value for an extreme
value day. F -measure is computed as follows:

F -measure = 2TP

2TP + FP + FN

The third metric, Kolmogorov-Smirnov (K) statistic, mea-
sures the similarity of two distributions F1 and F2 by
taking the maximum absolute value of their difference,
i.e. maxx |F1(x) − F2(x)|. The last metric ρ computes the
correlation (ρ) between the observed and predicted values
only for the days identified as extremes (i.e., in top-5th or
bottom-5th percentiles).
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Fig. 5 CDF of predicted daily minimum temperature at a
weather station in Michigan, 1990–1999. [Color figure can be
viewed in the online issue, which is available at wileyonlineli-
brary.com.]

Table 3 summarizes the results. In terms of RMSE, F -
measure, and K , QCR outperforms QR for all stations in
all nine data sets evaluated. This suggests that QCR can
effectively detect the magnitude and timing of extreme
valued days better than QR. However, for correlation of
extreme precipitation values (ρ), QCR does not perform as
well as QR for many stations because its γ parameter has
been tuned to aggressively focus on fitting the distribution
well (see Fig. 5 for example of CDFs obtained using QR
and QCR at one of the stations in Michigan).

6.3.2. Comparison of MLCRGQ and MLCRHET

This section presents our experimental results applying
the CR framework to heterogeneous sources of predic-
tor variables. The first approach, MLCRHET incorporates
predictor variables from GCM-driven RCM simulations
directly into the distribution bias term of our objective
function, while the second approach, MLCRGQ uses GQM
to adjust the distribution of GCM-driven RCM simula-
tions before incorporating them into the objective function.
Figure 6 compares the CDFs of predicted daily mini-
mum temperature at a weather station located in Eau
Claire, Michigan. Both MLCRGQ and MLCRHET were
able to match the observed distribution quite well, though
MLCRGQ shows a slightly lower bias especially for mini-
mum temperature above 0◦C. For precipitation, both meth-
ods appear to underestimate the frequency of nonrain days.
This is a known artifact of most regression-based meth-
ods when applied to zero-inflated time series data [19].
MLCRGQ shows marginal improvement over MLCRHET,
particularly for precipitation between 5 and 15 mm (see
Fig. 7).

7. CONCLUSIONS

We propose a framework called contour regression
that simultaneously maximizes the prediction accuracy of
regression methods as well as reduces biases in the overall
shape of the predicted distribution. The framework can
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Fig. 6 Comparing the cumulative distribution function of
MLCRHET and MLCRGQ for daily minimum temperature at a
weather station in Michigan. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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Fig. 7 Comparing the cumulative distribution function of
MLCRHET and MLCRGQ for daily precipitation at a weather sta-
tion in Michigan. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

incorporate different loss functions as well as nonlinear
relationships between the predictor and response variables.
Our experimental results showed that the CR framework
can improve the fit of predicted distribution without
degrading its prediction accuracy significantly.

ACKNOWLEDGMENT

This work was supported by NSF Award CNH 0909378.
The views and conclusions contained in this paper are those
of the authors and do not reflect the views or policies of
the funding agency.

REFERENCES

[1] C. Tebaldi and D. Lobell, Towards probabilistic projec-
tions of climate change impacts on global crop yields,
Geophys Res Lett 35(8) (2008), L08705, doi: 10.1029/
2008GL033423.

[2] K. Hayhoe, S. Sheridan, L. Kalkstein, and S. Greene,
Climate change, heat waves, and mortality projections for
Chicago, J Great Lakes Res 36 (2010), 65–73.

[3] D. Scott and G. McBoyle, Climate change adaptation in
the ski industry, Mitig Adapt Strateg Glob Change 12(8)
(2007), 1411–1431.

[4] J. M. Themeßl, A. Gobiet, and A. Leuprecht, Empirical-
statistical downscaling and error correction of daily

precipitation from regional climate models, Int J Climatol,
31(10) (2011), 1530–1544.

[5] C. Piani, G. Weedon, M. Best, S. Gomes, P. Viterbo, S.
Hagemann, and J. Haerter, Statistical bias correction of
global simulated daily precipitation and temperature for the
application of hydrological models, J Hydrol 395(3) (2010),
199–215.

[6] Z. Abraham, P.-N. Tan, P. Perdinan, J. Winkler, S.
Zhong, and M. Liszewska, Position preserving multi-output
prediction, In European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in
Databases (ECMLPKDD), 2013.

[7] C. Monteleoni, G. A. Schmidt, S. Saroha, and E. Asplund,
Tracking climate models, Stat Anal Data Mining 4(4)
(2011), 372–392.

[8] North American Regional Climate Change Assessment Pro-
gram, http://www.narccap.ucar.edu/. Accessed on January,
2012.

[9] S. P. Charles, B. C. Bates, I. N. Smith, and J. P. Hughes,
Statistical downscaling of daily precipitation from observed
and modelled atmospheric fields, Hydrol Process 18(8)
(2004), 1373–1394.

[10] R. Wilby, S. Charles, E. Zorita, B. Timbal, P. Whetton,
and L. Mearns. Guidelines for use of climate scenarios
developed from statistical downscaling methods, 2004.

[11] J. A. Winkler, G. S. Guentchev, Perdinan, P.-N. Tan, S.
Zhong, M. Liszewska, Z. Abraham, T. Niedzwiedz, and
Z. Ustrnul, Climate scenario development and applications
for local/regional climate change impact assessments: an
overview for the non-climate scientist. Part II: Considera-
tions when using climate change scenarios, Geogr Compass
5/6 (2011), 301–328.

[12] D. Maraun, F. Wetterhall, A. M. Ireson, R. E. Chandler,
E. J. Kendon, M. Widmann, S. Brienen, H. W. Rust, T.
Sauter, M. Themeßl, V. K. C. Venema, K. P. Chun, C. M.
Goodess, R. G. Jones, C. Onof, M. Vrac, and I. Thiele-Eich,
Precipitation downscaling under climate change: recent
developments to bridge the gap between dynamical models
and the end user, Rev Geophys 48 (2010), 134.

[13] J. A. Winkler, G. S. Guentchev, M. Liszewska, Perdinan,
and P.-N. Tan, Climate scenario development and applica-
tions for local/regional climate change impact assessments:
an overview for the non-climate scientist. Part II: Considera-
tions when using climate change scenarios, Geogr Compass
5/6 (2011), 301–328.

[14] R. Koenker, Quantile Regresssion, Wiley Online Library,
Cambridge University Press, 2005.

[15] X. He, Y. Yang, and J. Zhang, Bivariate downscaling with
asynchronous measurements, J Agric Biol Environ Stat
17(3) (2012), 476–489.

[16] H. Cheng and P.-N. Tan, Semi-supervised learning with
data calibration for long-term time series forecasting, In
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
ACM, 2008, 133–141.

[17] P. Chaudhuri, On a geometric notion of quantiles for
multivariate data, J Am Stat Assoc 91(434) (1996),
862–872.

[18] J. I. Marden, Positions and qq plots, Stat Sci 19(4) (2004),
606–614.

[19] Z. Abraham and P.-N. Tan, An integrated framework for
simultaneous classification and regression of time-series
data, In SIAM International Conference on Data Mining
(SDM), 2010, 653–664.

Statistical Analysis and Data Mining DOI:10.1002/sam

http://www. narccap.ucar.edu/



